Towards a de Bruijn–Erdős Theorem in the $$L_1$$ -Metric
نویسندگان
چکیده
منابع مشابه
A RELATED FIXED POINT THEOREM IN n FUZZY METRIC SPACES
We prove a related fixed point theorem for n mappings which arenot necessarily continuous in n fuzzy metric spaces using an implicit relationone of them is a sequentially compact fuzzy metric space which generalizeresults of Aliouche, et al. [2], Rao et al. [14] and [15].
متن کاملA de Bruijn - Erdős theorem and metric spaces
De Bruijn and Erdős proved that every noncollinear set of n points in the plane determines at least n distinct lines. Chen and Chvátal suggested a possible generalization of this theorem in the framework of metric spaces. We provide partial results in this direction.
متن کاملThe De Rham Decomposition Theorem for Metric Spaces
We generalize the classical de Rham decomposition theorem for Riemannian manifolds to the setting of geodesic metric spaces of finite dimension.
متن کاملMultidimensional $\beta$-skeletons in $L_1$ and $L_{\infty}$ metric
The β-skeleton {Gβ(V )} for a point set V is a family of geometric graphs, defined by the notion of neighborhoods parameterized by real number 0 < β < ∞. By using the distance-based version definition of β-skeletons we study those graphs for a set of points in R d space with l1 and l∞ metrics. We present algorithms for the entire spectrum of β values and we discuss properties of lens-based and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete & Computational Geometry
سال: 2013
ISSN: 0179-5376,1432-0444
DOI: 10.1007/s00454-013-9496-y